THE UNIVERSITY OF NEW SOUTH WALES
ELEC4122
Session 2, 2010

Strategic Leadership & Ethics — Student guide to Course

Course Staff

Course convener: Dr I. Skinner, room EE335, i.skinner@unsw.edu.au
You will also have tutors.

Consultations: Students are encouraged to use the on-line discussion tools.
Matters concerning course content & administration should be referred to Dr Skinner.
Your tutors have responsibility for arrangements within their respective tutorial and seminar classes.
All questions about the industrial training requirements should be addressed to Dr Epps.

Course details

Units of Credit: ELEC4122 is a 6 UoC course; we emphasis that 6 UoC means 6 UoC: the indicative student workload is 150 hr (i.e. 12 hr/wk), spread over the session. Of course, the amount of work you actually choose to do depends upon your ambition and your ability.

Classes: ELEC4122 has 5 timetabled class hours, but you do not have 5 hours every week. lecture classes begin in Week 1 and run every week, though not always for 2 hrs. The 2-hr seminar classes meet 11 times, beginning in week 2. The 1-hr tutorial classes run from week 1 to week 7. A full list of the classes is available on-line.
You must attend the same seminar and tutorial class all session.

Course Information

Context and aims

This course is the final, formal step in the non-technical, professional part of your undergraduate education. It also includes the Industrial Training requirement, specified by Engineers Australia.

Aims: This course is primarily designed to enhance your ability to (i) analyse ethical problems, determine a plan of action, and articulate this resolution to others, and (ii) make decisions about technological innovations and to, thereby, engage productively in the leadership of various groups. In both cases we are primarily interested in the context of engineering, but the skills apply equally to your wider life.
A further expectation is to provide you with an understanding of the complex, interlocking organisations that form the wider, non-technical context in which engineers practice, and with some practical guidance both for interacting professionally with other engineers, wherever they might be, and for behaving when practising as engineers, especially within large organisations.
under strong commercial pressures. Ethical analyses will be specifically informed by the formal
guidance provided by the Engineers Australia (2000).

Parallel Teaching: Some of the lecture classes will be shared with the postgraduate course
GSOE9510 because there is an overlap of content. Such classes will be in the 4122 class-room.

Learning outcomes

After the successful completion of this course, the student will be able to

- describe important aspects of the social, environmental, regulatory, & organisational con-
text of engineering;
- identify ethical problems, particularly in the context of practising engineering;
- formulate and communicate consistent, coherent responses to such problems, using the
formal language of ethics and critically examine the ethical arguments proposed by other
people;
- explain details of an engineer’s rights and responsibilities;
- participate in making and criticising technocratic decisions;
- use different criteria, including aspects of sustainability, to evaluate technological innova-
tions;
- help lead, i.e. facilitate the effective working of, a team (be it a technical project team or
those involved in using an innovation); and
- identify ways to assess and reduce risks, especially those associated with human fallibility.

In summary, we expect you will improve your ability to consider problems from multiple per-
spectives and make decisions associated with uncertain, inconsistent and imprecisely defined
requirements, as if often the case when people are involved.

Additionally, students are expected to improve their skills in gathering and synthesising in-
formation, in the oral and written presentation of arguments, in listening, and in working with
other people, some of whom will have ideas adn beliefs very different from your own. It is clear
these objectives can be met only when students actually engage in arguing (both written and oral)
about the best course of action to be followed, i.e. the best decison.

Teaching strategies

ELEC4122 consists of the following elements: “lectures”, student presentations, other classroom
activities/workshops, and self-paced learning.

Self-paced and reflective learning

This is not a conventional lecture course. Rather than having a set of traditional, weekly, ‘in-
structional’ lectures, this course is structured as a reading course. This means that you will only
develop your understanding of the core material by reading the prescribed resources, and not at
lectures. Additionally, there will be structured, co-operative reading and learning.
It is an important professional skill to be able to search through information and identify what you need; being able to discipline your own learning will stand you in good stead for the rest of your lives. It is also important to be able to reflect on what you have learnt for without doing so you cannot identify what you yet need to learn.

Of course, no lecture notes will be handed out, but you will receive suggested readings.

Lectures

Nevertheless, students are expected to attend the classes. Formal ‘lectures’ introduce the main themes of the course, provide some motivation, and present the fundamental concepts you must understand.

In other classes we will have visitors who will discuss specific topics, set in a specific context.

Student-led seminars

The student-led seminars are not only to foster your communication and teamwork skills; they require you to identify ethical problems and argue their resolution. This is true whether you are presenting or listening. You will be actively engaged in meeting the learning objectives while exploring questions identified by yourselves.

Tutorial activities

The other tutorial activities are to provide structured reflection on some of the ideas explored during the course. They will afford you the chance to share your understandings and experiences with each other. Once again you will practise key skills. The syllabus of this course is not such that you can learn without active engagement with other people.

Be assured that you will find this course more fun than you initially expect. Every year students are different but every year it is a pleasure to see them get passionate & care about something. Whatever else, make sure you *ENJOY YOURSELF*. We enjoy this course, too.

Assessment

There are several components for the summative assessment in this course, as detailed in Table 1. Note that this assessment schedule *differs from that used previously* in several ways.

<table>
<thead>
<tr>
<th>assessment task</th>
<th>% weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>final exam</td>
<td>†</td>
</tr>
<tr>
<td>class-test</td>
<td>†</td>
</tr>
<tr>
<td>major assignment</td>
<td>15</td>
</tr>
<tr>
<td>2 seminar team presentations</td>
<td>15</td>
</tr>
<tr>
<td>classroom participation</td>
<td>15</td>
</tr>
<tr>
<td>reflection exercise</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>

†Indicates that the weighting is variable (see explanation in text).
The weightings for the class-test and final exam are flexible. These will earn you a mark given by

\[Q = 50 \times \max\left(\frac{t}{3} + \frac{2e}{3}, \frac{t}{5} + \frac{4e}{5}\right) \]

where \(e \) and \(t \) are your exam and test marks, respectively, normalised to be out of 1. *Students must get a satisfactory mark for \(Q \) — this combination of final exam and the class-test marks — in order to pass this course.* If not, the grade UF will apply to what would be, otherwise, a passing mark.

The “due dates” for all assessment tasks are given in Table 5 below.

Final Examination: The written examination at the end of session will be of 2 hr duration. It will test critical thinking and general understanding of the course material in a controlled setting. It will be an *open-book* exam.

Class-Test: This *closed-book* test of 1 hr duration will test basic knowledge of the core ideas and key terms of the course. It will take the form of short answer questions.

Seminar Presentations: You will participate in the presentation of two seminars as part of a *group of 4 students*. You can express preferences to help us organise the groups. To do this, *you must complete & submit* the Seminar Group Preference Form by Friday 30 July (Week 2). The allocation of topics & the groupings of four students per group will be announced in your classes in Week 3, and be available on the web-site.

In these presentations, the group is expected to explore the ethical implications of the topic. This necessarily involves *a clear statement of the questions* to be answered. There should be perspectives from various ethical viewpoints that could be adopted to answer your questions. *Conclusions must be attempted.* Students are expected to research their topics. Presentations are expected to last about 45 minutes. The balance of the class will be general discussion. Full details of this task’s requirements are in a separate document.

In-session Participation: You are required to participate during classes, *both tutorials and seminars*. This means *working on the activities, actively listening and appropriately contributing to discussions*, not simply being physically present. There will be no marks given for mere presence. If you do not do these things, you will not learn what we expect you to learn this session, notably how to respond when asked a question. If you do not have a formal, acceptable explanation for missing a class, your participation mark will be reduced.

You are also expected to ask questions on-line about the topics introduced by your classmates in their learning resources.

Major Assignment: Students are to complete a self-nominated activity that *demonstrates their successful meeting of the learning objectives*. This can be the work of an individual or a team; it can take any form: a traditional written report, an oral presentation, a piece of drama, a video, a song, etc. Note, though, that there is only a limited amount of time available for students to give oral presentations.

Your nominated task *must get prior approval* from Dr Skinner, who will consider (i) the scope of the task against it assessments weighting (15 %), (ii) how the proposal meets the nominated
objectives, and (iii) the number of people involved. It must be submitted by the agreed, prescribed date. In all cases this will be on or before the end of Week 13, in accord with UNSW’s assessment policies. The sooner the proposal is in, the sooner it can be approved and you can start working on it. In any case, your proposal (i.e. your tender) must be submitted by Wednesday 18 August (Week 5).

Any student who does not nominate something else as a major assignment will be randomly allocated a task. This will be writing a formal report about a prescribed topic or producing a web-based learning resource based on a key-reading from a course reference. Of course, as your proposal, you can nominate to write a formal report on a topic of your own choosing, or you can nominate to produce a learning resource, perhaps a longer one by working as a pair of students, and get to choose the subject matter.

Formal Report: Students writing a formal report are required to **discuss the ethical and decision-making issues associated with the topic** given to them. Your report must consider both sides of any argument; it must clearly identify your conclusions about the issues and why you reached them. The report requires discussion of your topic using the formal frameworks for ethical reasoning, introduced in the course. It requires you to do some research. The main body of the report (including introduction & conclusion) should be 2500 ± 10% words. Full details of this task’s requirements are in separate documents. *All formal reports are due Monday 27 September (Week 10).*

Learning Resource: Students producing a learning resource will be assigned a key reading relevant to this course (see Appendix 2). You must **produce a learning resource for the rest of the class that will be placed on the web-site and is based on the ideas explored in this reading** and, of course, the learning objectives of ELEC4122. You are also expected to respond to any questions that may be asked on moodle in response to the resource developed, though you are not necessarily expected to have the definitive answer. A few readings are longer and will require 2 students to work together. The resource is expected to take a typical student only 10-15 minutes to work through. Full details of this task’s requirements are in separate documents. *All learning resources are due Monday 27 September (Week 10).*

Reflection Exercise: You are required to complete an on-line multiple-choice quiz before the Week 2 lecture. Near the end of the session, you will be asked to do the same thing again. You will then be asked to write a reflection on how and why your thinking has or has not changed during the course, by making use of your two sets of answers. Full details of this task’s requirements are in separate documents.

Industrial Training: Until you submit your report on industrial training, your mark for this course cannot be finalised. *If you have passed this course, but not completed your industrial training, then your grade will be set to PE.* The requirements for your industrial training and the associated report are available from the Faculty Office.

Note these general considerations about your assessment.

(i) All assessed tasks will be graded according to the academic merit (see nominated learning objectives) of the individual piece of work.

(ii) Marks will be moderated across all the tutorial classes to ensure equity. Any numbers given
by your tutor only have meaning inside your class.
(iii) Being able to formulate and ask appropriate questions is an important skill and, where rele-
vant, marks are influenced by the quality of the questions you raise.
(iv) Marks are also influenced by your ability to communicate your ideas clearly and concisely.

In all assessment tasks, you should read the instructions and pay attention to formal require-
ments detailed on any relevant cover-sheet. There is a standard penalty for late submission of a
task: mark = min(raw-mark ×0.8n, 50%), where \(n \) is the number of days late.

Course Schedule

The schedule for classes is shown in Tables 2-4.

The schedule for the plenary Wednesday classes is incomplete, and the later weeks involving
visitors are tentative only. Other available time-slots in these classes will be available to students,
if needed, for any oral presentations associated with major assignments. Obviously, this schedule
is subject to change. Please confirm the schedules for the 3 strands of classes on the web-site,
where it can be kept up-to-date.

Your seminar class meets 11 times. On each occasion, there will be discussion of ethical
issues as they apply in (electrical) engineering practice. Your seminar class is strictly limited to
a maximum of 16 students and presentations will be made by teams of 3 or 4 students.

<table>
<thead>
<tr>
<th>week</th>
<th>learning focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Innovation in Context</td>
</tr>
<tr>
<td>2</td>
<td>Ethics</td>
</tr>
<tr>
<td>3</td>
<td>Uncertainty & Risk</td>
</tr>
<tr>
<td>4</td>
<td>guest: AMoore (UNSW Ethics)</td>
</tr>
<tr>
<td>5</td>
<td>guest: SCohen (philosopher)</td>
</tr>
<tr>
<td>6</td>
<td>Engineering leadership</td>
</tr>
<tr>
<td>7</td>
<td>guest: TSpooner (Standards Aus)</td>
</tr>
<tr>
<td>8</td>
<td>guest: MBest (bioethicist)</td>
</tr>
<tr>
<td>9†</td>
<td>with PMort (UNSW)</td>
</tr>
<tr>
<td>10</td>
<td>guest: tbc</td>
</tr>
<tr>
<td>11</td>
<td>class-test</td>
</tr>
<tr>
<td>12</td>
<td>guest: RHanna (EA)</td>
</tr>
<tr>
<td>13†</td>
<td>guest: CBray (adventurer)</td>
</tr>
</tbody>
</table>

†These classes are not a formal part of the syllabus of ELEC4122.
Table 3 Seminar class schedule.
* There will be one week without a seminar; the particular week depends upon your class.

<table>
<thead>
<tr>
<th>week</th>
<th>topic</th>
<th>led by</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Engineering Context</td>
<td>your tutor</td>
</tr>
<tr>
<td>3</td>
<td>Making Decisions</td>
<td>your tutor</td>
</tr>
<tr>
<td>4</td>
<td>Whistleblowing</td>
<td>your tutor</td>
</tr>
<tr>
<td>5 to 13*</td>
<td>student-led seminars</td>
<td>group of 3-4 students</td>
</tr>
</tbody>
</table>

Table 4 Schedule for Tutorial Activities.
Note that there is no class scheduled after week 7.

<table>
<thead>
<tr>
<th>week</th>
<th>learning focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>organisations</td>
</tr>
<tr>
<td>2</td>
<td>evaluating technologies</td>
</tr>
<tr>
<td>3</td>
<td>leadership, not management</td>
</tr>
<tr>
<td>4</td>
<td>strategic plans</td>
</tr>
<tr>
<td>5</td>
<td>group decision-making</td>
</tr>
<tr>
<td>6</td>
<td>go/no-go decisions</td>
</tr>
<tr>
<td>7</td>
<td>technocratic decisions</td>
</tr>
</tbody>
</table>

Assessment dates: The proposal for the Major Assignment is due Wednesday 18 August (Week 5). Any student who does not submit a proposal will be given a randomly assigned assignment, as explained above.
Formal Reports and Learning Resources must be submitted by Monday 27 September (Week 10); self-nominated oral presentations will take place at the allocated time; other Major Assignments must be submitted by the end of the teaching session, i.e. Friday Week 13.
The Class-Test will be in the Wednesday class in Week 11 (9.30 am Wednesday 6 October).

Table 5 Schedule of Critical Dates

<table>
<thead>
<tr>
<th>week</th>
<th>date</th>
<th>activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2</td>
<td>Tue</td>
<td>students: submit Reflection stage 1 on-line</td>
</tr>
<tr>
<td></td>
<td>Fri</td>
<td>students: submit presentation teams</td>
</tr>
<tr>
<td>Week 3</td>
<td>Tue</td>
<td>staff: release presentation topics to teams</td>
</tr>
<tr>
<td>Week 5</td>
<td>Wed</td>
<td>students: submit proposal</td>
</tr>
<tr>
<td></td>
<td>Fri</td>
<td>staff: approvals</td>
</tr>
<tr>
<td>Week 6</td>
<td>Mon</td>
<td>staff: release assignment approvals/allocations</td>
</tr>
<tr>
<td>Week 10</td>
<td>Mon</td>
<td>students: submit report or learning resource (if applicable)</td>
</tr>
<tr>
<td>Week 11</td>
<td>Wed</td>
<td>students: class-test</td>
</tr>
<tr>
<td>Week 13</td>
<td>Fri</td>
<td>students: submit Reflection stage 2 on-line</td>
</tr>
<tr>
<td></td>
<td></td>
<td>students: and anything else leftover</td>
</tr>
<tr>
<td>tba</td>
<td></td>
<td>exam</td>
</tr>
</tbody>
</table>
Resources for Students

On-line resources

There will be an active on-line site for this course within the Faculty’s moodle site: https://moodle.eng.unsw.edu.au/moodle/ To access this use your ZID & Zpass. If you have difficulties with moodle, contact John-Paul Posada at jp.posada@unsw.edu.au in the first instance.

Additional on-line resources relevant to these courses:
The Library: info.library.unsw.edu.au/web/services/teaching.html
The Learning Centre: www.lc.unsw.edu.au

There is a wealth of case studies related to engineering ethics on The Web. We encourage you to explore it, and think about what you find. Do you agree with it? Why? Likewise, on The Web, there is plenty of free advice about leadership and strategies. Be aware, though, that much of this is in the context of businesses.

Reference books

Martin & Schinzinger (1996) covers the essential material about ethics, and relates this to engineering practice. The aspects related to leadership are supported by Northouse (2007) and strategy & technological innovation are discussed in Schilling (2008), neither of which is specific to engineering. A reference generally useful and also set in the context of (albeit civil) engineering is Beder (1998).

As mentioned above, “lecture notes” will not be distributed. However, you will get copies of selected readings associated with the various key topics. The crucial ones of these will be distributed on paper; others will be found on WebVista.

Other books

There are many, better written and more entertaining books that pose significant, timeless ethical issues in works of fiction, and yet relevant to engineers, e.g. Asimov (1950), Clarke (1965), Shelley (1818), Stevenson (1886), and Orwell (1949). Likewise, engaging writers (not those of textbooks) have explored the nature of leadership, organisations, and strategy, from the legendary Homer and Lao-Tzu, through the Renaissance (e.g. Machiavelli 1532), to modern authors (e.g. Tolkien 1954). Consider the contrasting approaches to leadership shown by Richard II and Henry V, as presented by Shakespeare. Musings on such things are as old as human society itself.

DVDs

In your first 2 hr seminar class, you will watch a DVD telling the story of a celebrated “engineering achievement” (from Constructing Australia 2007, Seven Wonders of the Industrial World 2005). The Library has copies of all the sagas and we encourage you to view a couple more during the rest of the session, particularly with friends.

The Learning Centre

The Learning Centre is located in behind Student Central in the Chancellry. It provides free and confidential academic support services for students. These include assistance with communicating information in both written & oral forms. Given the nature of assessment tasks in this course,
you may find this useful. You can approach the Centre directly for assistance on an individual (or group) basis, or you may choose to discuss your needs with Dr Skinner first.

Other Matters

Academic Honesty and Plagiarism

Plagiarism is the unacknowledged use of other people’s work, including the copying of assignments written by other students or material found on The Web. Plagiarism is considered a serious offence by the University and severe penalties may apply. Any plagiarism will be referred to the Head of School for further action. For more information about plagiarism, please see Learning Centre (2010), or ask us.

Administrative Matters

On issues and procedures regarding such matters as special needs, equity and diversity, occupational health and safety, enrolment, rights, and general expectations of students, please refer to the relevant School & UNSW policies.

Finally, here is our best advice on how to succeed in this course.

(i) Learn the key principles so that you can identify ethical issues and engage in ethical debates. Working through the textbook is an excellent way to start, but only a start.

(ii) Practise these skills in discussions, and not only in your designated tutorial times. Listen to others.

(iii) Complete all the assessment tasks at the appropriate time, to the required specifications.

(iv) Above all, make sure you are enjoying yourself and finding points of interest, for then the rest will follow. If you haven’t found anything of interest in this course, then start asking questions, and please, please tell us.

Course References

Constructing Australia 2007, television series, Australian Broadcasting Corp, Sydney.
Dowling, D., Carew, A. & Hadgraft, R. 2010, Engineering Your Future, Wiley
Appendix 1: Graduate Attributes

This syllabus and learning activities address a number of UNSW’s graduate attributes (UNSW 2003).

#2 An in-depth engagement with the relevant disciplinary knowledge in its interdisciplinary context.
The formal syllabus explores engineering in its interdisciplinary context.

#3 The capacity for analytical and critical thinking and for creative problem solving.
The core learning outcome is that you can analyse poorly articulated problems and work your way to a ‘best’ resolution.
#4 *The ability to engage in independent and reflective learning.*
This is addressed by having you read materials instead of attending traditional lectures.

#5 *Information literacy – the skills to locate, evaluate and use relevant information.*
This is addressed as you evaluate and identify the information relevant to the problems you deal with in tutorial-based tasks, from its being a reading course, and by the nature of the major assignment.

#7 *An appreciation of, and respect for, diversity.*
This is part of your developing ethical awareness; you will learn about other people’s perspectives.

#9 *The skills required for collaborative and multidisciplinary work.*
This is addressed by several group-based tasks and the formal syllabus.

#11 *A respect for ethical practice and social responsibility.*
That this is addressed is obvious!

#12 *The skills of effective communication.*
These are developed by the oral presentations and other in-session activities.

Note that this course addresses the following EngineersAustralia ‘Personal and Professional Skills or Capabilities.’

- team skills and leadership ability and
- an understanding of and commitment to the ethical, social, cultural, and environmental responsibilities of the professional engineer.

Appendix 2A: Report Topics

Students who do not submit an Assignment Proposal may be assigned to write a Formal Report on a topic selected randomly from the following list. *Students can propose one of these or another topic.*

1. Reverse engineering
2. The ethics of liability insurance
3. Life support systems [medical, not space exploration]
4. Use of high frequency electromagnetic radiation
5. High voltage power-lines
6. Whistleblowing
7. Professional codes of ethics
8. Technology transfer & sustainability
9. What makes technology appropriate for a specific social context?
10. Planning approvals for large engineering projects
11. Databases and privacy
12. Microchipping people
13. Disposable, repairable or built-in obsolescence?
14. Tissue engineering & stem cells
15. Cybersecurity: whose responsibility?
16. Expert witnesses, forensic engineering & the courts
17. Transgenic organisms
18. Genetic engineering of bacteria
19. Engineering standards & intellectual property
20. Private ownership of “essential” infrastructure
21. Climate change and greenhouse gas offsets
22. ‘Freedom of Speech’ on the world-wide-web
23. Precision-guided weapons systems
24. Forestry & paper-product industries
25. Email, network-traffic & privacy

Appendix 2B: Key Readings

Students who do not submit an Assignment Proposal may be assigned to produce a Learning Resource based on a sources selected randomly from the following list. Students can propose one of these.

<table>
<thead>
<tr>
<th>author</th>
<th>learning focus</th>
<th>code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin & Schinzinger*</td>
<td>ch3 social experimentation</td>
<td>MS3</td>
</tr>
<tr>
<td></td>
<td>ch4 responsibility for safety</td>
<td>MS4</td>
</tr>
<tr>
<td>Beder</td>
<td>ch4 development of technology</td>
<td>B4</td>
</tr>
<tr>
<td></td>
<td>ch10 role of experts</td>
<td>B10</td>
</tr>
<tr>
<td>Dowling et al</td>
<td>ch7 sustainability</td>
<td>DCH</td>
</tr>
<tr>
<td>Evan & Manion</td>
<td>ch10 responsibilities</td>
<td>EM10</td>
</tr>
<tr>
<td></td>
<td>ch14 technology decisions</td>
<td>EM14</td>
</tr>
<tr>
<td>Kotter</td>
<td>ch1 management & leadership</td>
<td>Ko</td>
</tr>
<tr>
<td>Northhouse</td>
<td>ch2 traits approach to leadership</td>
<td>N2</td>
</tr>
<tr>
<td></td>
<td>ch3 skills & leadership</td>
<td>N3</td>
</tr>
<tr>
<td></td>
<td>ch4 style & leadership</td>
<td>N4</td>
</tr>
<tr>
<td></td>
<td>ch5 situational approach to leadership</td>
<td>N5</td>
</tr>
<tr>
<td></td>
<td>ch11 personality & leadership</td>
<td>N11</td>
</tr>
<tr>
<td>Katzenbach & Smith</td>
<td>leadership & teamwork</td>
<td>KS</td>
</tr>
<tr>
<td>Schilling</td>
<td>ch3 innovation</td>
<td>S3</td>
</tr>
<tr>
<td></td>
<td>ch4 standards & design dominance</td>
<td>S4</td>
</tr>
<tr>
<td></td>
<td>ch6 strategic direction</td>
<td>S6</td>
</tr>
<tr>
<td>Kletz</td>
<td>ch1 & app2 accidents</td>
<td>Kl</td>
</tr>
</tbody>
</table>