ELEC8355

Optical Communication Systems

COURSE INFORMATION

Session 1, 2011

Course Staff
Course coordinator: Prof G.D. Peng
Room EE332, Tel: 9385 4014, Email: G.Peng@unsw.edu.au

Consultations
Students are encouraged to consult with the coordinator by email; Students may seek consultation with the course coordinator at other times by appointment. If necessary, regular consultation times could be arranged.

Course Details
Credits: This is a 6 UoC postgraduate course.

Contact hours: This is a distance learning course and the contact will be mostly through email.

Course Context and Aims
The course aims to make the student familiar with fundamental principles, theoretical methods and experimental technologies of optical communication systems, and enable the student to carry out basic optical fibre system analysis, design and measurement.

This course will cover topics including

- **Unit 1** Introduction to Optical Communication Systems
- **Unit 2** Optical Sources I: Light Emitting Diodes
- **Unit 3** Optical Sources II: Lasers and Fibre Amplifiers
- **Unit 4** The Optical Channel: Optical Fibres
- **Unit 5** Optical Detection I: Photodiodes
- **Unit 6** Optical Detection II: Receiver Noise
- **Unit 7** Digital Optical Fibre Communication Systems
- **Unit 8** Analogue Optical Fibre Communication Systems
- **Unit 9** Components for Optical Systems
- **Unit 10** Wavelength Division Multiplexing (WDM)
- **Unit 11** Optical Networks
- **Unit 12** Nonlinear Effects on Optical Systems
Relation to other courses
The course is a professional elective offered to postgraduate students at the University of New South Wales. The course gives the foundations for optical communication systems.

Pre-requisites: There is no pre-requisites for this course. However, it would be very helpful if you have completed ELEC8350 or ELEC9350 first.

Assumed knowledge: It is essential that the students are familiar with the fundamentals of optical fibres, electromagnetic theory, engineering mathematic methods and communication system theory. It is further assumed that the students have satisfactorily completed undergraduate courses in electrical engineering or physics. If you feel you don't have the appropriate background, then these books should help.

B.P. Lathi, *Modern Digital & Analog Communication Systems*
D.K. Cheng, *Field & Wave Electromagnetics*

Following courses: None.

Learning outcomes
At the conclusion of this course, the students should have a good understanding of

1. Fundamental principles & techniques of optical fibre systems
2. Photonic components in optical communication systems
3. Design & application of various optical communication systems
4. Basic aspects of optical networks
5. Current topics & issues in optical communication systems

Teaching strategies
The course provides lecture notes, tutorial questions and assignments for students to study by themselves. The coordinator will provide assistance through regular communication through email and consultation.

Assessment
Your final mark is determined by four parts:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment 1</td>
<td>10%</td>
</tr>
<tr>
<td>Assignment 2</td>
<td>10%</td>
</tr>
<tr>
<td>Assignment 3</td>
<td>10%</td>
</tr>
<tr>
<td>Final examination</td>
<td>70%</td>
</tr>
</tbody>
</table>

Assignment: The assignments includes both short-answer questions on routine calculations and fundamental facts and also a selection of longer problems. A list of formulae will be provided in your examination paper. You need remember some simple relations not included.

Self assessment: At the end of each unit you’ll find some exercises designed to help you test your understanding of what you are reading. Where appropriate, answers to the exercises are provided so you can check your answers. Do try to complete the exercises on your own first. If you have problems, discuss them with your teacher.

Final examination: The exam will be standard closed-book 3 hour written examination. University approved calculators are allowed. The examination tests analytical and critical thinking and general understanding of the course material in a controlled fashion. The final examination includes both
short-answer questions on routine calculations and fundamental facts and also a selection of longer problems. A list of formulae will be provided in your examination paper. You need remember some simple relations not included. Assessment is a graded mark according the correct fraction of the answers to the exam questions.

Resources for Students

Reference books
We recommend you have either of these as a main reference book:
 J. Senior (1992 or 2009), Optical Fibre Communications, Prentice-Hall

Course materials
Course related materials and notes will be handed out at the beginning of the session. Additional materials will be distributed through Vista or email. Assignments will be made available as follows

Assignment 1:
 Be available on web on Friday, Week 3, 18 March, 2011
 Deadline for submission on Monday, Week 7: 11 April, 2011

Assignment 2:
 Be available on web on Friday, Week 6 8 April, 2011
 Deadline for submission on Monday, Week 10: 9 May, 2011

Assignment 3:
 Be available on web on Friday, Week 9 6 May, 2011
 Deadline for submission on Monday, Week 14 6 June, 2011

Other Matters

Academic Honesty and Plagiarism: Plagiarism is the unacknowledged use of other peoples work, including the copying of assignment works and laboratory results from other students. Plagiarism is considered a serious offence by the University and severe penalties may apply. For more information about plagiarism, please refer to http://www.lc.unsw.edu.au/plagiarism

Continual Course Improvement: Students are advised that the course is under constant revision in order to improve the learning outcomes of its students. Please forward any feedback (positive or negative) on the course to the course lecturer or via the Course and Teaching Evaluation and Improvement Process.

Administrative Matters: You need to be informed on the School's and University's policies about students' responsibilities, academic & other misconduct, special consideration, conduct of examinations, and the submission & assessment of assignments as well as students’s equity and diversity, occupational heath and safety, enrolment and rights. Such policies can be found at www.ee.unsw.edu.au and www.student.unsw.edu.au/atoz, respectively.

Any student who, by reason of disability, needs modification of his/her teaching or learning environment is encouraged to contact us or the University's Equity Officer (Disability) on 9385 4734.