COURSE INTRODUCTION — Session 1, 2010

Course Staff

Course coordinator:    Prof. Jinhong Yuan, room EE324B
                      J.Yuan@unsw.edu.au

Lecturer:    Dr Jeff Li
              Jeff.Li@nicta.com.au

Consultations: Students are encouraged to use the open consultation hour, please contact the lecturer first by email; students may seek consultation with the course convener at other times by appointment. Appointment can be made during regular lecture breaks (e.g. during breaks between 6pm-9pm on Tuesday class) in the first instance, rather than by email.

Consultations: Tuesday, 5pm–6pm, Lab EE322

Course details

Credits: The course is a 6 UoC course; expected workload is 9-10 hours per week throughout the 12 week session.

Contact hours: The course consists of 3 hours of per week, comprising lectures, and tutorials (a typical class might be 2 hours of lecture followed by 1 hour of tutorial.):

Lectures: Tuesday, 6pm–8pm, EE224
Tutorial: Tuesday, 8pm-9pm, EE224

Course Information

Context and aims

This course provides advanced knowledge of wideband wireless communication techniques. It include the areas of diversity: Time diversity, Space diversity, Frequency diversity; Wideband CDMA systems, Wideband OFDM systems, antenna arrays, MIMO channel modeling in the angular domain and statistical models, smart antennas...
This course provides advanced knowledge of wideband wireless communication systems. It include the areas of:

- Diversity: Time diversity, Space diversity, Frequency diversity
- Wideband CDMA systems
- Wide OFDM systems
- Smart antennas techniques
- Multiuser detection and receiver designs

**Aims:** This course aims to:

a. Make the student familiar with the theories of information transmission in wireless channels.
b. Make the student familiar with wideband techniques and their applications.
c. Enable the student to do analysis and design multiuser detection algorithms.

**Relation to other courses**

This course provides advanced knowledge of wideband wireless communication techniques to enable the students to design advanced wireless communication systems. It includes the topics of diversity techniques, multiple access and interference management, Wideband CDMA, Wideband OFDM, antenna arrays, multiple-input/multiple-output communications, spatial multiplexing, space-time processing and coding; and multiuser detection, opportunistic communication, multiuser waterfilling. It serves as an excellent basis from which to commence research in the area. Various aspects of the course bring students up to date with the very latest developments in the field, as seen in recent international conferences and journals, and some of the laboratory work is designed in the style of an empirical research investigation. TELE9753 is also well complemented by ELEC9754 Coding and Information Theory, which gives an insight into advanced knowledge of error control coding technique and theories of information transmission mainly at the physical layer. It is recommended for future study.

**Pre-requisites:** The minimum pre-requisite for the course is TELE3113, Analogue and Digital Communications (or equivalent). Knowledge from TELE4651 and TELE4653 is highly desirable.

**Assumed knowledge:** It is essential that you are familiar with the digital communications, modulation/demodulation, channel coding/decoding, matched filter receiver, coherent and non coherent detections, random signals and processing, fading channels, bit error rate analysis. Students who are not confident in their knowledge from previous digital communications courses (especially the topics mentioned) are strongly
advised to revise their previous course materials as quickly as possible to avoid difficulties in this course.

**Previous course code:** The course replaces previous course TELE9353 Cellular Mobile Communications.

**Learning outcomes**

On successful completion you should be able to:

1. Understand of the principles, algorithms and technologies used in transmission information in wireless mobile channels
2. Derive expressions for error performance and capacity for various transmission schemes covered in the lectures
3. Explain the operation of example algorithms covered in lectures, and discuss the effects of varying parameter values within these;
4. Analyze the performance of a wireless communication systems
5. Apply the principles and technique to communication systems design or undertake further research

The course delivery methods and course content address a number of core UNSW *graduate attributes*; these include:

a. The capacity for analytical and critical thinking and for creative problem-solving, which is addressed by the tutorial exercises and laboratory work.
b. The ability to engage in independent and reflective learning, which is addressed by tutorial exercises together with self-directed study.
c. The skills of effective communication, which are addressed by the viva-style verbal assessment in the laboratory.
d. Information literacy, which is addressed by the homework.

Please refer to [http://www.ltu.unsw.edu.au/content/userDocs/GradAttrEng.pdf](http://www.ltu.unsw.edu.au/content/userDocs/GradAttrEng.pdf) for more information about graduate attributes.

**Teaching strategies**

The course consists of the following elements: lectures and tutorials, and home works. If possible we will introduce some lab session based on MATLAB software.

**Lectures**

During the lectures, techniques for the analysis and design of the various transmit and receiving scheme will be presented. The lectures provide you with a focus on the core material in the course, together with qualitative, alternative explanations to aid your understanding. Various examples will be given, to enrich the analytical course content.
The lectures materials distributed in class will give a basic guide to the course syllabus, but you will need to supplement them with additional reading, of the recommended textbook and/or other materials recommended by the lecturing staff. In particular, you should not assume that attendance at all lectures (even with a glance or two through the notes), on its own, is sufficient to pass the course.

**Home work and Problem sheets**
The lectures can only cover the course material to a certain depth; you must read the textbook(s) and reflect on its content as preparation for the lectures to fully appreciate the course material. Home preparation provides you with the background knowledge you will need. The problem sheets aim to provide in-depth quantitative and qualitative understanding of wireless communications theory and methods. Together with your attendance at classes, your self-directed reading, completion of problems from the problem sheet and reflection on course materials will form the basis of your understanding of this course.

**Assessment**

- Mid-session exam: 30%
- Individual project: 20%
- Final examination: 50%

**Mid-session examination:** The mid-session examination tests your general understanding of the course material, and questions may be drawn from any course material up to the end of week 6. It is usually scheduled in Week 7, lecture time. It is closed-book test. Grades will be assigned according to the understanding of each topic/question/technical. This is related to learning outcomes 1 and 2.

**Individual project:** The project examination tests your general understanding of a particular technique and its performance in wireless communications, which you have studied in the course material up to the end of week 7. The project is usually given in Week 6 or 7, lecture time. You need to hand-in before week 11. Grades will be assigned according to the project report, results, discussions, programs. This is related to learning outcomes 1, 2, and 3.

**Final examination:** The exam in this course is a standard closed-book 3 hours written examination, comprising four-to-six compulsory questions. University approved calculators are allowed. The examination tests analytical and critical thinking and general understanding of the course material in a controlled fashion. Questions may be drawn from any aspect of the course, unless specifically indicated otherwise by the lecture staff. Please note that you must pass the final exam in order to pass the course. This is related to learning outcomes 3, 4 and 5.

**Course Schedule**
<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to wireless channel</td>
<td>[1]</td>
</tr>
<tr>
<td>2</td>
<td>Detection and Diversity in Fading channels</td>
<td>[1]</td>
</tr>
<tr>
<td>3</td>
<td>Time diversity and Antenna diversity</td>
<td>[1]</td>
</tr>
<tr>
<td>4</td>
<td>Cellular System, multiple access</td>
<td>[1]</td>
</tr>
<tr>
<td>5</td>
<td>Interference management</td>
<td>[1]</td>
</tr>
<tr>
<td>6</td>
<td>Wideband CDMA and OFDM</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td><strong>Mid-session examination, duration 1-1.5 hours</strong></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Capacity</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Capacity of fading channels</td>
<td>[1]</td>
</tr>
<tr>
<td>9</td>
<td>Multiuser capacity</td>
<td>[1]</td>
</tr>
<tr>
<td>10</td>
<td>Opportunistic communications</td>
<td>[1]</td>
</tr>
<tr>
<td>11</td>
<td>MIMO systems</td>
<td>[2]</td>
</tr>
<tr>
<td>12</td>
<td>MIMO systems</td>
<td>[2]</td>
</tr>
</tbody>
</table>

Resources

Textbooks

Prescribed textbook
The following textbook is prescribed for the course:


You may want to check the coverage of this text before purchasing, as some topics in the syllabus are not featured. Unfortunately there is no single text that covers all topics in a satisfactory depth. Additional references, listed below and at the end of some lecture note sets, will in combination provide complete coverage of the course. Lecture notes will be provided, however note that these do not treat each topic exhaustively and additional reading is required.

Reference books
The following books are good additional resources for MIMO topics:


On-line resources
Some additional on-line resources relevant to the course:
Library resources http://info.library.unsw.edu.au/web/services/teaching.html

Other Matters
Academic Honesty and Plagiarism

TELE9753 Advanced Wireless Communications
Plagiarism is the unacknowledged use of other peoples work, including the copying of assignment works and laboratory results from other students. Plagiarism is considered a serious offence by the University and severe penalties may apply. For more information about plagiarism, please refer to http://www.lc.unsw.edu.au/plagiarism

**Continual Course Improvement**
The course is under constant revision in order to improve the learning outcomes of its students. Please forward any feedback (positive or negative) on the course to the course convener or via the Course and Teaching Evaluation and Improvement Process (surveys at the end of the course).

**Administrative Matters**
On issues and procedures regarding such matters as special needs, equity and diversity, occupational heath and safety, enrolment, rights, and general expectations of students, please refer to the School policies, see http://scoff.ee.unsw.edu.au/.